PDD-Net: Plant Disease Diagnoses Using Multilevel and Multiscale Convolutional Neural Network Features

نویسندگان

چکیده

Overlooked diseases in agriculture severely impact crop growth, which results significant losses for farmers. Unfortunately, manual field visits plant disease diagnosis (PDD) are costly and time consuming. Although various methods of PDD have been proposed, many challenges yet to be investigated, such as early stage leaf diagnosis, class variations diseases, cluttered backgrounds, computational complexity the system. In this paper, we propose a Convolutional Neural Network (CNN)-based framework (i.e., PDD-Net), employs data augmentation techniques incorporates multilevel multiscale features create scale-invariant architecture. The Flatten-T Swish (FTS) activation function is utilized prevent gradient vanishing exploding problems, while focal loss used mitigate imbalance during PDD-Net training. method outperforms baseline models, achieving an average precision 92.06%, recall 92.71%, F1 score 92.36%, accuracy 93.79% on PlantVillage dataset. It also achieves 86.41%, 85.77%, 86.02%, 86.98% cassava These demonstrate efficiency robustness diagnosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Double-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence

In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

Offline Writer Identification Using Convolutional Neural Network Activation Features

Convolutional neural networks (CNNs) have recently become the state-of-the-art tool for large-scale image classification. In this work we propose the use of activation features from CNNs as local descriptors for writer identification. A global descriptor is then formed by means of GMM supervector encoding, which is further improved by normalization with the KL-Kernel. We evaluate our method on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Agriculture

سال: 2023

ISSN: ['2077-0472']

DOI: https://doi.org/10.3390/agriculture13051072